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- quantum mechanics has unique features (superposition of states, entanglement, ...)
- exploit these features to perform computations
- suggest some advantages over classical computers (solve certain problems
substantially faster)
- different quantum computing paradigms have been proposed
- digital quantum computer (gate-based approach)
- adiabatic quantum computing and quantum annealing (analog approaches)
- quantum cellular automata

- limited usefulness due to hardware constraints
- hybrid approaches:
- variational quantum eigensolver and quantum approximate optimization algorithm
- “robust” against gate imperfections, shallow circuits, already useful for a limited number
of qubits



- notation for the Pauli matrices

- subscripts indicate qubit: X;Y; =X® Y

- computational basis is z-basis:
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Digital Quantum Computer



Digital QC: Principle

- applies quantum gates to registers of qubits, performs arbitrary computations
- interesting algorithms (e.g. Shor or Grover) have been proposed to solve problems
faster than on a classical computer
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Digital QC: Vincenzo’s Criteria

Criteria for a universal quantum computer

- well-defined qubits (two-level system)

- initialization of the qubits in a well defined-state

- long decoherence time

- a universal set of quantum gates (very small set of one- and two-qubit gates)
- qubit-selective readout

Quantum Quantum Readout /
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Digital QC: Qubit Implementations

- many platforms have been suggested/explored:

- Josephson junctions - topological systems (non-abelian

- photonic qubits anyons)

* Rydberg atoms - optical lattices (internal atomic states)
- electrons

- nuclear spin (NMR) - van der Waals heterostructures

- quantum dots
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- many platforms have been suggested/explored:

- Josephson junctions - topological systems (non-abelian

- photonic qubits anyons)

* Rydberg atoms - optical lattices (internal atomic states)
- electrons

- nuclear spin (NMR) - van der Waals heterostructures

- quantum dots

- platforms differ vastly regarding the relevant characteristics
- gate fidelities
-+ connectivity
- storage and decoherence time
- scalability (number of qubits)
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Digital QC: Characteristics

Advantages:
- can run arbitrary quantum algorithms (quantum Turing machine)
Disadvantages:

- limited by currently available hardware

- limited number of gate operations due to short decoherence times and gate infidelity
- number of qubits is generally small
- quantum error correction demands even more qubits

- number of proposed algorithms is fairly limited

- so far only one claim of actual quantum advantage:

- Google 2019: sampling random quantum circuits
- 53 superconducting qubits
- classical supercomputer was limited to 43 qubits
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Analog QC: Principle |

Here: Analog Quantum Computing = Adiabatic Quantum Computing

- solve an optimization problem encoded in a problem Hamiltonian Hp
- start with the ground state of a well known Hamiltonian

N
Ho = ZX,' (5)
i=1
- slowly drive the Hamiltonian to Hp

H(t) = (1= f(t))Ho + f(t)Hp, f(0)=0, f(t) =1 (6)

- if done slow enough the system will remain in the instantaneous ground state
(adiabatic theorem)

- maximum feasible speed depends on minimum energy gap in the system

tr = O(AE?) 7)



Analog QC: Principle Il
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Characteristics

Advantages:

- well suited for optimization/eigenvalue problems
- commercial platforms with thousands of qubits available (e.g. D-Wave with
superconducting qubits)

Disadvantages:

- not universal, at least on current hardware (e.g. Shor algorithm cannot be mapped)
- near degeneracies/avoided crossings require slow driving
- no evidence for quantum speed-up so far



Variational Quantum Eigensolver
(VQE)
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- hybrid approach that may render today’s quantum hardware more useful

- solve optimization/eigenvalue problems
- combine a quantum computer with a classical optimizer

1. prepare a state |W(f)) according to some parameters 4 (e.g. parametric circuit Uc(6))
2. evaluate the cost function (i.e. measure some observable) w.rt. this trial state

3. employ a classical optimizer to propose a new set of parameters

4. repeat until converged

- variational principle guarantees
(W(6)|Hp W (6)) > Eo (8)

- the optimization of parameters can mitigate imperfections of the hardware to some
extent

1



VQE: Feedback Loop

Quantum Subroutine

Quantum Register Trial Wave Function Cost Function
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VQE: Typical Structure of a Parametric Circuit

N qubits store the trial states
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VQE: Typical Structure of a Parametric Circuit

single qubit gates rotate each qubit according to some parameters 6

90 UI,O (6)
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VQE: Typical Structure of a Parametric Circuit

entanglers generate entanglement among the qubits, crucial for quantum speed-up
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VQE: Typical Structure of a Parametric Circuit

operator structure is repeated

q0

q1

anN

13



VQE: Entanglement Schemes
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- of course other schemes are conceivable as well

- best choice depends on the connectivity of the hardware platform and the problem
under consideration

- it would be nice to have a simple scheme guiding the construction of such circuits

14



VQE: Molecular Hamiltonian

- electronic problem in Born-Oppenheimer approximation

N
Nn  Ne 1 e ez
H=— 11y — 2 (9)
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- electronic problem in Born-Oppenheimer approximation

N
Nn  Ne 1 e ez
H:_ aF = = = (9)

,z_: ;;zmo‘R .y 2uz_:14ﬂ50\ff—fj|
S—— i#j

kinetic

electron-nuclei int. -
electron-electron int.

- Hartree-Fock method allows for efficient mean-field treatment

- limited usefulness, does not incorporate electronic correlations

- can serve as a starting point for post-Hartree-Fock methods like configuration
interaction or coupled cluster

- these methods are computationally hard due to the scaling w.r.t. system size

- only feasible for “small” molecules, typically up to O(10?) electrons

- quantum computers can efficiently store and work with these correlated states



VQE: Unitary Coupled Cluster (UCC) Ansatz |

- wave function ansatz
W) = e T" |W,) (10)

- reference state |V ), typically a single Slater determinant of Hartree-Fock orbitals
- cluster operator

Ne
T=>)T (1)
i=1

- terms describe j-particle excitations to unoccupied (virtual) orbitals

T, = Z tiala; (12)
ieocc.
aevirt.
L= Y t),atalaiq; (13)
i>jeocc.
a>bevirt.
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VQE: Unitary Coupled Cluster Ansatz (UCC) Il

- the problem is to determine the coefficients t!, tgb, ... that best describe the ground
state (or any other desired state)
- usually one truncates T after some order of excitation n < N, (e.g. up to double
excitations)
- otherwise the problem might be too large
- higher order terms contribute less
- usually better truncation than configuration interaction (recovers more of the correlation
energy due to the non-linear ansatz)

- the molecular Hamiltonian in second quantization reads

H=" hpajaq+ > hpguabalara, (15)
pq pakl

How to map the fermionic UCC function and the molecular Hamiltonian to a quantum
computer (spin-1/2)?



VQE: Fermionic Transformations

- the fermionic operators a}T and a; can be transformed
Jordan-Wigner transformation

to spin-1/2 operators using the

e

T i E: ==

aj =exp |IT Y (16)
k=1

j=1
a; = exp —/7T§ oroy
J R R
k=1
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VQE: Fermionic Transformations

- the fermionic operators a}T and a; can be transformed to spin-1/2 operators using the
Jordan-Wigner transformation

e
T i ==
aj = exp IWZ% o, | o; (16)
| k=1
- o
aj = exp —/WZO’:O’; o (17)
k=1

with o = 12(X; + i¥;) and o7 = 2(X; — iY;)
- alternative: Bravyi-Kitaev (BK) transformation
- example: BK trafo for H,

H = go1+ 9120 + 9221 + 932021 + G4 Yo Y1 + gsXo X (18)

(parameters g; depend on nuclear coordinates and some constants)



VQE: Quantum Expectation Estimation |

- -

How do we measure (V(0)|Hp|W(6))?

- a quantum computer must be able to selectively measure Z;

- other operators can be measured by performing unitary transformations U
0=Uufzu (19)

- this allows for single-qubit Pauli measurements (measure X, Y, Z)

0=X U=H (20)
O=Y U = Hst (21)
0=7 U=1 (22)

here H denotes the Hadamard and S the 7/s phase gate

19



VQE: Quantum Expectation Estimation Il

- the same principle can be applied to multi-qubit measurements

0=X®Z U=CNOT(H®1) (23)
0=X®Y U= CNOT (H ® HS') (24)

- this allows general Pauli strings to be measured, eg XY ® Y ®Z

20



VQE: Quantum Expectation Estimation Il

- let's assume the Hamiltonian consists of M Pauli strings

M
H=> H, (25)
~=1
- it's expectation value is given by
M
(H) = > (i) (26)
y=1

- individual state preparation for every Pauli string = additive variances

M
Var[H] = ZVar[HW] (27)

21



VQE: Quantum Expectation Estimation IV

- assuming a normal distribution

Var[H
npreparanns =M Z 6[ V] (28)

~=1
state preparations are required to achieve a variance smaller than e

- usually the Var[H,] are unknown (but can be estimated)

- various strategies can be used to reduce the number of state preparations

- commutating terms can be measured in parallel

- for best results only terms with Cov[H,, Hg] = 0 should be grouped, otherwise
correlations might increase the number of necessary measurements

Example: H = —XoX1 — YoYq + 2021 + Zo + Z4 (29)
= {=XoX1}, {=YoY1, 2021}, {20,24} (30)
(covariance between XoX; and YqYq)

22



VQE: Ingredients for Molecular Problem

We now have all ingredients for the electronic structure problem:

=

- trial state |W(#)) is the UCC ansatz translated to Pauli matrices
- problem Hamiltonian Hp is the molecular Hamiltonian transformed to Pauli matrices
- optimization parameters are the UCC coefficients

- measurement of the observable can be achieved by clever measurement of Pauli
strings

23



VQE: Example He — H*
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Data from Peruzzo et al. (2014), He — HT ground state energy using two photonic qubits

24



VQE: Example He — H* 1l

----- energy levels
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optimization step

- convergence of the Nelder-Mead (simplex) algorithm
- gradient-free (evaluations of the cost function require costly state preparations) 25



VQE: Example H,
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Data from O’Malley et al. (2016), H, ground state energy using two superconducting qubits
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Quantum Phase Estimation (QPE): Principle

Previous to the VQE ansatz QPE was used for electronic structure problems on quantum
computers.

- given a unitary operator U, QPE estimates the phase w in U|W) = ™« |¥) of an
eigenstate |V)
- we can choose U = exp [Ht/n], the phase w determines the energy of the state
- the qubits of an additional register are iteratively entangled with the system register
using controlled unitary gates
- the system qubits act as control bits
- the unitary is applied with different fixed phases 2°, 2", 2%, ...
- the inverse quantum Fourier transformation is used to extract the phase from the
ancillary register
- QPE reproduces w with high probability within a margin e using O (log('/<)) ancillary
qubits
- requires O('/=) controlled unitary gates

- still requires a scheme to prepare |W) close to the desired state
27



Quantum Phase Estimation (QPE): Sketch

counting register
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Quantum Phase Estimation (QPE): Characteristics

Advantages:

- requires a single measurement

- in principle one could use QPE instead of QEE in VQE

Downsides:

- requires an extra qubit register
- the accuracy depends on the number of extra qubits m

- the number of required gates for the CU operations grows rapidly, quickly becomes
infeasible due to limited decoherence times and gate fidelities

- CU gates are hard to implement

- if 2Mw is not an integer success probability is reduced from 1to > % ~ 0.405

29



VQE: Classical Binary Optimization Problems

- optimization problem whose solutions are bit strings (N bits)

2=22...2, 2z €{0,1} (31)

- How to generate trial states? 30



VQE: Classical Binary Optimization Problems

- optimization problem whose solutions are bit strings (N bits)
Z2=22...2, 2 €{0,1} (31)

- objective function

given by m clauses Cj(z)

- How to generate trial states? 30



VQE: Classical Binary Optimization Problems

- optimization problem whose solutions are bit strings (N bits)
Z2=22...2, 2 €{0,1} (31)

- objective function

given by m clauses Cj(z)
- Ci(z) = 0 if z does not fulfill the clause, 1 (or some finite value) otherwise

- How to generate trial states? 30



VQE: Classical Binary Optimization Problems

- optimization problem whose solutions are bit strings (N bits)
Z2=22...2, 2 €{0,1} (31)

- objective function

given by m clauses Cj(z)
- Ci(z) = 0 if z does not fulfill the clause, 1 (or some finite value) otherwise
- goal: find the z that fulfills the maximum number of clauses (MAX-SAT problem)

- How to generate trial states? 30



VQE: Classical Binary Optimization Problems

- optimization problem whose solutions are bit strings (N bits)
Z2=22...2, 2 €{0,1} (31)

- objective function

given by m clauses Cj(z)
- Ci(z) = 0 if z does not fulfill the clause, 1 (or some finite value) otherwise
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VQE: Classical Binary Optimization Problems

- optimization problem whose solutions are bit strings (N bits)
Z2=22...2, 2 €{0,1} (31)

objective function

given by m clauses Cj(z)

- Ci(z) = 0 if z does not fulfill the clause, 1 (or some finite value) otherwise

- goal: find the z that fulfills the maximum number of clauses (MAX-SAT problem)

- each clause typically depends only on a few bits

- zi = 3(1—Z;) maps cost function to an Ising Hamiltonian, can be treated with VQE
ansatz

Hp_th +Zh,)zz+2h,mzzzk+ (33)

i,j=1 ijk=1

- How to generate trial states? 30
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QAOA: Approximation Algorithms

- many classical binary optimization problems are computationally hard
- consider approximation algorithms that yield non-optimal but good solutions

c let Crax = max C(z) be the optimal solution

- the quality of a proposed solution z is given by the approximation ratio

r= 22 (34)

- r =1 corresponds to optimality

- if r > r* for all problem instances: r* characterizes the quality of the approximation
algorithm

31



QAOA: Ansatz

QAOA offers a heuristic ansatz to solve classical binary optimization problems encoded as
Ising Hamiltonians

Hp_ZhZ +Zh,,zz+2h,,,ezzzk+ (35)
ij=1 ijk=1

and employs a mixing Hamiltonian

N
Hy = ZX[~ (36)
i—1
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QAOA: Ansatz

QAOA offers a heuristic ansatz to solve classical binary optimization problems encoded as
Ising Hamiltonians

HP_ZhZ +Zh,jzz+2h,mzzzk+ (35)

ij=1 ijR=1

and employs a mixing Hamiltonian

N N N
Hu=Y_X. e M =T]e " =) R(28) (36)
i=1 i=1 i=1

A single integer parameter p (circuit depth) controls the trial state ansatz
|W(ﬁ, 7)) = o~ BoHn p—impHe | o—iBiHM p—imHp W) (37)

that is determined by 2p parameters 0 < ~; < 2rand 0 < 8; < 7.
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QAOA: Circuit Visualization

compute new parameters ¢
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QAOA: Optimization Problem

- the parameters 5 and ¥ are optimized to maximize the expectation value

Fo = (W(B,7)|He|W(B,7)) (38)
- approximation ratio
Fp
I'p = Com (39)

- adding a layer cannot worsen the result

Fpr1 2 Fp (40)
- optimal limit
lim Fp - Cmax (41)
p—o0

approximates adiabatic quantum computing

34
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- recall adiabatic quantum computing:
H(t) = (1= f(t))Hm + f(t)Hp (42)
- discrete time-step

|W(t+ At)) = exp|—iAt ((1—f(t))Hwm + f()Hp) | V(1)) . (43)

- Trotter-Suzuki first order
eé(A+B) ~ e(SAe(SB 4 0(62) (44)
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- recall adiabatic quantum computing:

H(t) = (1 f(t))Hu + f(D)Hp (42)
- discrete time-step
|W(t + At)) = exp [—/At ((1=f(t))Hum +f(t)Hp)] [W(t)). (43)
- Trotter-Suzuki first order
eé(A+B) ~ eéAeéB + 0(52) (44)

|W(t + At)) =~ exp {—i(T - f(t))AtHM] exp [—if(t)Ath] [W(t)) + O(AL?) (45)
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|W(t + At)) =~ exp {—iBHM] exp [—WHP} [W(t)) + O(AL?) (46)

O(At?)
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- define B = (1—f(t)) At and v = f(t)At

iabatictrajectory
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one QAOA layer

O(At?)

—

- define g = (1—f(t)) At and v = f(t)At
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QAOA: Motivation Il

|W(t+ At)) ~ exp {iBHM] exp [WHP} [W(t)) + O(AL?) (46)

one QAOA layer

O(At?)
—
- define g = (1—f(t)) At and v = f(t)At
- one time-step = one layer of QAOA
- however QAOA optimizes 8 and ~ independently

- p — oo (infinitely many layers) reproduces
adiabatic trajectory

iabatictrajectory

¥ (2))
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QAOA: Applications

- maximum likelihood channel decoding (communications)

- community detection (social, neural and biological networks)

- portfolio optimization (finance industry)

- exact cover problem (tiling problems and aircraft flight gate assignment)
- maximum independent set (radio networks and genetic engineering)
- MaxCut (integrated circuit design, statistical physics, data clustering)
- linear algebra (fundamental for many applications)

- traveling salesperson (logistics, traveling)

- graph coloring (scheduling, compiler optimization)

- correlation clustering (data science)

- other satisfiability problems, ...
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QAOA: Advantages

- well controllable

- single integer parameter determines the circuit structure
- increasing p can not worsen solution (monotonous)

- it has been shown that the parametric square-pulse ansatz (“bang-bang”) is optimal
given a fixed quantum computation time budget

- QAOA can learn to exploit diabatic transitions to overcome small energy gap
limitations

- gate imperfections can be mitigated by parameter tuning
- circuits are relatively shallow
- nice implementation on Rydberg platform (driving with global pulses)
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Max-Cut



Max-Cut: Problem Statement

Partition the vertices of a graph in two sets, such that the sum of edge weights
between the sets becomes maximal.

N
C(Z) = Z W,‘]'Z,‘(1 — Zj) (47)

ij=1

39



Max-Cut: Problem Statement

Partition the vertices of a graph in two sets, such that the sum of edge weights
between the sets becomes maximal.

N
C2) =Y wz(1-2z) (47)
i,j=1
- NP-hard: no polynomial time algorithm (if N # NP)

- state-of-the-art solvers can solve up to N ~ 100

- stochastic solvers for N = ©0(10?) (no solution guaranteed)
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Max-Cut: Problem Statement

Partition the vertices of a graph in two sets, such that the sum of edge weights
between the sets becomes maximal.

N
C2) =Y wz(1-2z) (47)
ij=1
- NP-hard: no polynomial time algorithm (if N # NP)
- state-of-the-art solvers can solve up to N ~ 100
- stochastic solvers for N = ©0(10?) (no solution guaranteed)
- APX-hard: every polynomial-time approximation scheme has an approximation ratio
guarantee r* <1

- solving the problem for generic graphs with r* > 1677 &~ 0.9412 is NP-hard
- the best classical algorithm can only guarantee r* 2, 0.87856
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Max-Cut: Example

Here: equal weights wj; =1
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Max-Cut: Example

Here: equal weights wj; =1

t d th d
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Max-Cut: k-Regular Graphs

- often: only consider k-regular graphs (usually k = 3), i.e. graphs where each vertex
has exactly 3 edges to other vertices.
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Max-Cut: k-Regular Graphs

- often: only consider k-regular graphs (usually k = 3), i.e. graphs where each vertex
has exactly 3 edges to other vertices.

- solving with r* > 331/332 =~ 0.9970 is NP-hard

- best classical algorithm guarantees r g 0.9326

OOO O/O
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Max-Cut: Application of QAOA

- many studies investigating this problem (including original QAOA paper)
- the problem can be encoded as the Ising Hamiltonian

1
Hp = E Z Wi (1 — Z,'Zj) (48)
(i)
- problem instance specific constant
1
C= E Z W,’j (49)
(i)
- sub-circuit for each edge of the graph (wj; = 1): exp [—%W,mz,zj}

qi

qj R.(wijm)

¢
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Max-Cut: QAOA Results

Performance guarantees for 3-regular graphs (lower bounds):

- Farhi et al. (2014): r* > 0.692 for p =1

43



Max-Cut: QAOA Results

Performance guarantees for 3-regular graphs (lower bounds):

- Farhi et al. (2014): r* > 0.692 for p =1
- Wurtz & Love (2021):

- r* 2 0.7559 forp =2

- r* 2 0.7924 forp =3

43



Max-Cut: QAOA Results

Performance guarantees for 3-regular graphs (lower bounds):

- Farhi et al. (2014): r* > 0.692 for p =1
- Wurtz & Love (2021):
- r* 2 0.7559 forp =2
- r* 2 0.7924 forp =3
- no quantum advantage for at least p < 6

43



Max-Cut: QAOA Results

Performance guarantees for 3-regular graphs (lower bounds):

- Farhi et al. (2014): r* > 0.692 for p =1
- Wurtz & Love (2021):
- r* 2 0.7559 forp =2
- r* 2 0.7924 forp =3
- no quantum advantage for at least p < 6

- no known bounds for p > 3

43



Max-Cut: QAOA Results

Performance guarantees for 3-regular graphs (lower bounds):

- Farhi et al. (2014): r* > 0.692 for p =1
- Wurtz & Love (2021):
- r* 2 0.7559 forp =2
- r* 2 0.7924 forp =3
- no quantum advantage for at least p < 6

- no known bounds for p > 3
Zhou et al. (2020):

- robustness against small energy gaps
- exploit patterns in parameters
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Max-Cut: Approximation Ratio for Different p

Performance on weighted 4-regular graphs with 16 vertices, data from Zhou et al. (2020)
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Max-Cut: Small Energy Gaps

AQC requires extremely long evolution times when using a simple trajectory

AQC QAOQA
10 1.0
— GS —— GS
1E 1E
0.8 -
2E UE 2E
S — 3E 5 —— 3E
%06 % 0.6
=3 =3
o o
g g
2 0.4 - 2 0.4
I 5
e 3
. . M
0.0 A/“ 0.0 ; ; .

10° 10? 10* 106 0 10 20 30 40 50

total evolution time ts circuit depth p

Data from Zhou et al. (2020), 3-regular graph with N = 14 nodes and a small minimum
spectral gap AE < 1073
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Max-Cut: Small Energy Gaps

QAOA is reasonably robust against the small energy gap

AQC QAOQA
10 1.0
— GS —— GS
1E 1E
0.8 -
2E UE 2E
S — 3E 5 —— 3E
% 06 % 0.6
=3 =3
o o
g g
2 0.4 - 2 0.4
I 5
e 3
. . M
0.0 A/“ 0.0 ; ; .

10° 10? 10* 106 0 10 20 30 40 50

total evolution time ts circuit depth p

Data from Zhou et al. (2020), 3-regular graph with N = 14 nodes and a small minimum
spectral gap AE < 1073
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Max-Cut: Small Energy Gaps

p Z 24 significantly improves the result

AQC QAOA
1.0 1.0
— GS —— GS
1E 1E
0.8 4 i
2E U 2E
S — 3E 5 —— 3E
& 0.6 & 0.6
3 3
o o
Q )
o <%
8 0.4 8044
2 s
17 &
1
] A . M
0.0 T T T 0.0 T T T ¢
10° 10? 10* 106 0 10 20 30 40 50
total evolution time ¢ circuit depth p

Data from Zhou et al. (2020), 3-regular graph with N = 14 nodes and a small minimum
spectral gap AE < 1073
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Max-Cut: Small Energy Gaps

QAOA result can be used to craft an optimized trajectory for AQC

state population

Data from Zhou et al. (2020), 3-regular graph with N = 14 nodes and a small minimum
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Max-Cut: Random Graphs (ErdGs—-Rényi)

QAOA can also perform well on random graphs

1.00 K7+:k47$4_»f4 Fp =32
— +—+— ————— | p=16
T -3

-
\+N77 L |p=

= 0.90
/\—q/’*MH rP= z
0.85 1
/\f_/\// .
0.80 T T T T T T
6 8 10 12 14 16
]\T

orange: best classical algorithm, data from Crooks (2018) p



Max-Cut: Random Graphs (ErdGs—-Rényi)

Here p > 8 achieves quantum advantage (note system size however!)

1.00 K ———————+——+——+———+ ;| p= 32

\ —+ rp=16

Fp=38

-
\*H\; __+ ——+——+ Fp= 4

0.95 4

= 0.90
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orange: best classical algorithm, data from Crooks (2018) p
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Conclusions & Outlook: VQE

Conclusions:

- VQE has been used to accurately reproduce the energies of simple molecules

- with current hardware it produces more accurate results than QPE
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Conclusions & Outlook: VQE

Conclusions:

- VQE has been used to accurately reproduce the energies of simple molecules

- with current hardware it produces more accurate results than QPE
Outlook:

- treatment of larger molecules:

- largest so far 6 qubits for BeH, (heuristic ansatz instead of UCC)
- far from any actual quantum advantage

- deeper analysis of convergence and local optima
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Outlook: QAOA

Outlook:
- better understanding for p > 1
- optimizing mixer Hamiltonian
- improved strategies for optimizing ?/5

- tackle barren pleateaus

- demonstrate quantum advantage
- surpass classical approximation ratio Vst (B1)
on system sizes that cannot be treated _ ||
with exact algorithms
- actual experimental implementations Uty (B1)
- “soon”: QAOA for N = 400 vertices with - — -
p Z 25 (Rydberg atoms in optical Uty ;.2 (B1)
tweezer arrays)
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Thank you for your attention!
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