Variational Quantum Eigensolver and Quantum Approximate Optimization Algorithm

Fabian Köhler

23.11.2021

University of Hamburg

- quantum mechanics has unique features (superposition of states, entanglement, ...)
- \cdot exploit these features to perform computations
- suggest some advantages over classical computers (solve certain problems substantially faster)

- quantum mechanics has unique features (superposition of states, entanglement, ...)
- \cdot exploit these features to perform computations
- suggest some advantages over classical computers (solve certain problems substantially faster)
- · different quantum computing paradigms have been proposed
 - digital quantum computer (gate-based approach)
 - adiabatic quantum computing and quantum annealing (analog approaches)
 - quantum cellular automata
 - ...

- quantum mechanics has unique features (superposition of states, entanglement, ...)
- \cdot exploit these features to perform computations
- suggest some advantages over classical computers (solve certain problems substantially faster)
- · different quantum computing paradigms have been proposed
 - digital quantum computer (gate-based approach)
 - adiabatic quantum computing and quantum annealing (analog approaches)
 - quantum cellular automata
 - ...
- · limited usefulness due to hardware constraints

- quantum mechanics has unique features (superposition of states, entanglement, ...)
- \cdot exploit these features to perform computations
- suggest some advantages over classical computers (solve certain problems substantially faster)
- · different quantum computing paradigms have been proposed
 - digital quantum computer (gate-based approach)
 - \cdot adiabatic quantum computing and quantum annealing (analog approaches)
 - quantum cellular automata
 - ...
- limited usefulness due to hardware constraints
- hybrid approaches:
 - \cdot variational quantum eigensolver and quantum approximate optimization algorithm
 - "robust" against gate imperfections, shallow circuits, already useful for a limited number of qubits

Notation

• notation for the Pauli matrices

$$I = \sigma^{0} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$Y = \sigma^{2} = \sigma^{y} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

$$X = \sigma^{1} = \sigma^{x} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
(1)
$$Z = \sigma^{3} = \sigma^{z} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
(2)

- subscripts indicate qubit: $X_1Y_2 = X \otimes Y$
- computational basis is *z*-basis:

$$|0\rangle = |\downarrow\rangle \tag{3}$$

$$|1\rangle = |\uparrow\rangle$$
 (4)

Digital Quantum Computer

Analog Quantum Computer

Variational Quantum Eigensolver (VQE)

Quantum Approximate Optimization Algorithm (QAOA)

Max-Cut

Conclusions & Outlook

Digital Quantum Computer

Digital QC: Principle

- applies quantum gates to registers of qubits, performs arbitrary computations
- interesting algorithms (e.g. Shor or Grover) have been proposed to solve problems faster than on a classical computer

Digital QC: Vincenzo's Criteria

Criteria for a universal quantum computer

- well-defined qubits (two-level system)
- initialization of the qubits in a well defined-state
- \cdot long decoherence time
- a universal set of quantum gates (very small set of one- and two-qubit gates)
- qubit-selective readout

Digital QC: Qubit Implementations

- many platforms have been suggested/explored:
 - Josephson junctions
 - photonic qubits
 - Rydberg atoms
 - \cdot electrons
 - nuclear spin (NMR)
 - quantum dots

- topological systems (non-abelian anyons)
- optical lattices (internal atomic states)
- $\cdot\,$ van der Waals heterostructures

•

Digital QC: Qubit Implementations

- many platforms have been suggested/explored:
 - \cdot Josephson junctions
 - photonic qubits
 - Rydberg atoms
 - \cdot electrons
 - nuclear spin (NMR)
 - quantum dots

- topological systems (non-abelian anyons)
- optical lattices (internal atomic states)
- \cdot van der Waals heterostructures

•

- platforms differ vastly regarding the relevant characteristics
 - \cdot gate fidelities
 - \cdot connectivity
 - storage and decoherence time
 - scalability (number of qubits)

Advantages:

• can run arbitrary quantum algorithms (quantum Turing machine)

Advantages:

• can run arbitrary quantum algorithms (quantum Turing machine)

- limited by currently available hardware
 - · limited number of gate operations due to short decoherence times and gate infidelity
 - number of qubits is generally small
 - $\cdot\,$ quantum error correction demands even more qubits

Advantages:

• can run arbitrary quantum algorithms (quantum Turing machine)

- limited by currently available hardware
 - · limited number of gate operations due to short decoherence times and gate infidelity
 - number of qubits is generally small
 - quantum error correction demands even more qubits
- $\cdot\,$ number of proposed algorithms is fairly limited

Advantages:

• can run arbitrary quantum algorithms (quantum Turing machine)

- limited by currently available hardware
 - · limited number of gate operations due to short decoherence times and gate infidelity
 - number of qubits is generally small
 - $\cdot\,$ quantum error correction demands even more qubits
- $\cdot\,$ number of proposed algorithms is fairly limited
- so far only one claim of actual quantum advantage:
 - Google 2019: sampling random quantum circuits
 - 53 superconducting qubits
 - classical supercomputer was limited to 43 qubits

Analog Quantum Computer

Analog QC: Principle I

Here: Analog Quantum Computing = Adiabatic Quantum Computing

- $\cdot\,$ solve an optimization problem encoded in a problem Hamiltonian ${\it H}_{\rm P}$
- \cdot start with the ground state of a well known Hamiltonian

$$H_0 = \sum_{i=1}^{N} X_i \tag{5}$$

 \cdot slowly drive the Hamiltonian to $H_{
m P}$

$$H(t) = (1 - f(t))H_0 + f(t)H_P, \quad f(0) = 0, \quad f(t_f) = 1$$
(6)

- if done slow enough the system will remain in the instantaneous ground state (adiabatic theorem)
- maximum feasible speed depends on minimum energy gap in the system

$$t_{\rm f} = \mathcal{O}(\Delta E^{-2}) \tag{7}$$

Analog QC: Principle II

Advantages:

- well suited for optimization/eigenvalue problems
- commercial platforms with thousands of qubits available (e.g. D-Wave with superconducting qubits)

Advantages:

- well suited for optimization/eigenvalue problems
- commercial platforms with thousands of qubits available (e.g. D-Wave with superconducting qubits)

- not universal, at least on current hardware (e.g. Shor algorithm cannot be mapped)
- near degeneracies/avoided crossings require slow driving
- \cdot no evidence for quantum speed-up so far

Variational Quantum Eigensolver (VQE)

- \cdot hybrid approach that may render today's quantum hardware more useful
- solve optimization/eigenvalue problems
- · combine a quantum computer with a classical optimizer

- hybrid approach that may render today's quantum hardware more useful
- solve optimization/eigenvalue problems
- \cdot combine a quantum computer with a classical optimizer
 - 1. prepare a state $|\Psi(\vec{\theta})\rangle$ according to some parameters $\vec{\theta}$ (e.g. parametric circuit $U_{\rm C}(\vec{\theta})$)

- hybrid approach that may render today's quantum hardware more useful
- solve optimization/eigenvalue problems
- $\cdot\,$ combine a quantum computer with a classical optimizer
 - 1. prepare a state $|\Psi(\vec{\theta})\rangle$ according to some parameters $\vec{\theta}$ (e.g. parametric circuit $U_{\rm C}(\vec{\theta})$)
 - 2. evaluate the cost function (i.e. measure some observable) w.r.t. this trial state

- hybrid approach that may render today's quantum hardware more useful
- solve optimization/eigenvalue problems
- $\cdot\,$ combine a quantum computer with a classical optimizer
 - 1. prepare a state $|\Psi(\vec{\theta})\rangle$ according to some parameters $\vec{\theta}$ (e.g. parametric circuit $U_{\rm C}(\vec{\theta})$)
 - 2. evaluate the cost function (i.e. measure some observable) w.r.t. this trial state
 - 3. employ a classical optimizer to propose a new set of parameters

- hybrid approach that may render today's quantum hardware more useful
- solve optimization/eigenvalue problems
- $\cdot\,$ combine a quantum computer with a classical optimizer
 - 1. prepare a state $|\Psi(\vec{\theta})\rangle$ according to some parameters $\vec{\theta}$ (e.g. parametric circuit $U_{\rm C}(\vec{\theta})$)
 - 2. evaluate the cost function (i.e. measure some observable) w.r.t. this trial state
 - 3. employ a classical optimizer to propose a new set of parameters
 - 4. repeat until converged

- hybrid approach that may render today's quantum hardware more useful
- solve optimization/eigenvalue problems
- $\cdot\,$ combine a quantum computer with a classical optimizer
 - 1. prepare a state $|\Psi(\vec{\theta})\rangle$ according to some parameters $\vec{\theta}$ (e.g. parametric circuit $U_{\rm C}(\vec{\theta})$)
 - 2. evaluate the cost function (i.e. measure some observable) w.r.t. this trial state
 - 3. employ a classical optimizer to propose a new set of parameters
 - 4. repeat until converged
- variational principle guarantees

$$\langle \Psi(\vec{\theta}) | H_{\rm P} | \Psi(\vec{\theta}) \rangle \ge E_0$$
 (8)

- hybrid approach that may render today's quantum hardware more useful
- solve optimization/eigenvalue problems
- $\cdot\,$ combine a quantum computer with a classical optimizer
 - 1. prepare a state $|\Psi(\vec{\theta})\rangle$ according to some parameters $\vec{\theta}$ (e.g. parametric circuit $U_{\rm C}(\vec{\theta})$)
 - 2. evaluate the cost function (i.e. measure some observable) w.r.t. this trial state
 - 3. employ a classical optimizer to propose a new set of parameters
 - 4. repeat until converged
- variational principle guarantees

$$\langle \Psi(\vec{\theta}) | H_{\rm P} | \Psi(\vec{\theta}) \rangle \ge E_0$$
 (8)

 the optimization of parameters can mitigate imperfections of the hardware to some extent

VQE: Feedback Loop

VQE: Typical Structure of a Parametric Circuit

N qubits store the trial states

single qubit gates rotate each qubit according to some parameters $\vec{ heta}$

entanglers generate entanglement among the qubits, crucial for quantum speed-up

VQE: Typical Structure of a Parametric Circuit

operator structure is repeated

VQE: Entanglement Schemes

- of course other schemes are conceivable as well
- best choice depends on the connectivity of the hardware platform and the problem under consideration
- it would be nice to have a simple scheme guiding the construction of such circuits

VQE: Molecular Hamiltonian

• electronic problem in Born-Oppenheimer approximation

(9)
VQE: Molecular Hamiltonian

• electronic problem in Born-Oppenheimer approximation

- Hartree-Fock method allows for efficient mean-field treatment
- · limited usefulness, does not incorporate electronic correlations

(9)

VQE: Molecular Hamiltonian

• electronic problem in Born-Oppenheimer approximation

- · Hartree-Fock method allows for efficient mean-field treatment
- · limited usefulness, does not incorporate electronic correlations
- can serve as a starting point for post-Hartree-Fock methods like configuration interaction or coupled cluster
- \cdot these methods are computationally hard due to the scaling w.r.t. system size
- \cdot only feasible for "small" molecules, typically up to $\mathcal{O}(10^2)$ electrons

(9)

VQE: Molecular Hamiltonian

• electronic problem in Born-Oppenheimer approximation

- · Hartree-Fock method allows for efficient mean-field treatment
- · limited usefulness, does not incorporate electronic correlations
- can serve as a starting point for post-Hartree-Fock methods like configuration interaction or coupled cluster
- these methods are computationally hard due to the scaling w.r.t. system size
- \cdot only feasible for "small" molecules, typically up to $\mathcal{O}(10^2)$ electrons
- quantum computers can efficiently store and work with these correlated states

(9)

VQE: Unitary Coupled Cluster (UCC) Ansatz I

 \cdot wave function ansatz

$$|\Psi\rangle = e^{\tau - \tau^{\dagger}} |\Psi_{\rm ref}\rangle \tag{10}$$

- + reference state $|\Psi_{\rm ref}\rangle$, typically a single Slater determinant of Hartree-Fock orbitals
- cluster operator

$$T = \sum_{i=1}^{N_e} T_i \tag{11}$$

• terms describe *i*-particle excitations to unoccupied (virtual) orbitals

$$T_{1} = \sum_{\substack{i \in \text{occ.} \\ a \in \text{virt.}}} t_{a}^{i} a_{a}^{\dagger} a_{i}$$
(12)
$$T_{2} = \sum_{\substack{i > j \in \text{occ.} \\ a > b \in \text{virt.}}} t_{ab}^{i} a_{a}^{\dagger} a_{b}^{\dagger} a_{i} a_{j}$$
(13)

. . .

(14)

• the problem is to determine the coefficients t_a^i , t_{ab}^{ij} , ... that best describe the ground state (or any other desired state)

- the problem is to determine the coefficients t_a^i , t_{ab}^{ij} , ... that best describe the ground state (or any other desired state)
- usually one truncates T after some order of excitation $n < N_e$ (e.g. up to double excitations)
 - $\cdot\,$ otherwise the problem might be too large
 - higher order terms contribute less
 - usually better truncation than configuration interaction (recovers more of the correlation energy due to the non-linear ansatz)

- the problem is to determine the coefficients t_a^i , t_{ab}^{ij} , ... that best describe the ground state (or any other desired state)
- usually one truncates T after some order of excitation $n < N_e$ (e.g. up to double excitations)
 - $\cdot\,$ otherwise the problem might be too large
 - higher order terms contribute less
 - usually better truncation than configuration interaction (recovers more of the correlation energy due to the non-linear ansatz)
- \cdot the molecular Hamiltonian in second quantization reads

$$H = \sum_{pq} h_{pq} a_p^{\dagger} a_q + \sum_{pqkl} h_{pqkl} a_p^{\dagger} a_q^{\dagger} a_k a_l$$
(15)

- the problem is to determine the coefficients t_a^i , t_{ab}^{ij} , ... that best describe the ground state (or any other desired state)
- usually one truncates T after some order of excitation $n < N_e$ (e.g. up to double excitations)
 - otherwise the problem might be too large
 - higher order terms contribute less
 - usually better truncation than configuration interaction (recovers more of the correlation energy due to the non-linear ansatz)
- the molecular Hamiltonian in second quantization reads

$$H = \sum_{pq} h_{pq} a_p^{\dagger} a_q + \sum_{pqkl} h_{pqkl} a_p^{\dagger} a_q^{\dagger} a_k a_l$$
(15)

How to map the fermionic UCC function and the molecular Hamiltonian to a quantum computer (spin-1/2)?

VQE: Fermionic Transformations

• the fermionic operators a_j^{\dagger} and a_j can be transformed to spin-1/2 operators using the Jordan-Wigner transformation

$$a_{j}^{\dagger} = \exp\left[i\pi \sum_{k=1}^{j-1} \sigma_{k}^{+} \sigma_{k}^{-}\right] \sigma_{j}^{+}$$

$$a_{j} = \exp\left[-i\pi \sum_{k=1}^{j-1} \sigma_{k}^{+} \sigma_{k}^{-}\right] \sigma_{j}^{-}$$
(16)
(17)

with $\sigma_j^+ = 1/2(X_j + iY_j)$ and $\sigma_j^- = 1/2(X_j - iY_j)$

VQE: Fermionic Transformations

• the fermionic operators a_j^{\dagger} and a_j can be transformed to spin-1/2 operators using the Jordan-Wigner transformation

$$a_{j}^{\dagger} = \exp\left[i\pi \sum_{k=1}^{j-1} \sigma_{k}^{+} \sigma_{k}^{-}\right] \sigma_{j}^{+}$$

$$a_{j} = \exp\left[-i\pi \sum_{k=1}^{j-1} \sigma_{k}^{+} \sigma_{k}^{-}\right] \sigma_{j}^{-}$$
(16)
(17)

with $\sigma_j^+ = \frac{1}{2}(X_j + iY_j)$ and $\sigma_j^- = \frac{1}{2}(X_j - iY_j)$

• alternative: Bravyi-Kitaev (BK) transformation

VQE: Fermionic Transformations

• the fermionic operators a_j^{\dagger} and a_j can be transformed to spin-1/2 operators using the Jordan-Wigner transformation

$$a_{j}^{\dagger} = \exp\left[i\pi \sum_{k=1}^{j-1} \sigma_{k}^{+} \sigma_{k}^{-}\right] \sigma_{j}^{+}$$
(16)
$$a_{j} = \exp\left[-i\pi \sum_{k=1}^{j-1} \sigma_{k}^{+} \sigma_{k}^{-}\right] \sigma_{j}^{-}$$
(17)

with $\sigma_j^+ = \frac{1}{2}(X_j + iY_j)$ and $\sigma_j^- = \frac{1}{2}(X_j - iY_j)$

- alternative: Bravyi-Kitaev (BK) transformation
- $\cdot\,$ example: BK trafo for ${\rm H_2}$

$$H = g_0 1 + g_1 Z_0 + g_2 Z_1 + g_3 Z_0 Z_1 + g_4 Y_0 Y_1 + g_5 X_0 X_1$$
(18)

(parameters g_i depend on nuclear coordinates and some constants)

VQE: Quantum Expectation Estimation I

How do we measure $\langle \Psi(\vec{\theta}) | H_{\rm P} | \Psi(\vec{\theta}) \rangle$?

- a quantum computer must be able to selectively measure Z_i
- \cdot other operators can be measured by performing unitary transformations U

$$O = U^{\dagger} Z U \tag{19}$$

• this allows for single-qubit Pauli measurements (measure X, Y, Z)

$$O = X$$
 $U = H$ (20)

$$O = Y U = HS^{\dagger} (21)$$

$$O = Z \qquad \qquad U = 1 \tag{22}$$

here *H* denotes the Hadamard and *S* the $\pi/4$ phase gate

• the same principle can be applied to multi-qubit measurements

$$O = X \otimes Z \qquad \qquad U = \text{CNOT} (H \otimes 1) \tag{23}$$
$$O = X \otimes Y \qquad \qquad U = \text{CNOT} (H \otimes HS^{\dagger}) \tag{24}$$

.

• this allows general Pauli strings to be measured, e.g. $X \otimes Y \otimes Y \otimes Z$

VQE: Quantum Expectation Estimation III

• let's assume the Hamiltonian consists of M Pauli strings

$$H = \sum_{\gamma=1}^{M} H_{\gamma} \tag{25}$$

 \cdot it's expectation value is given by

$$\langle H \rangle = \sum_{\gamma=1}^{M} \langle H_{\gamma} \rangle \tag{26}$$

 \cdot individual state preparation for every Pauli string \Rightarrow additive variances

$$Var[H] = \sum_{\gamma=1}^{M} Var[H_{\gamma}]$$
(27)

VQE: Quantum Expectation Estimation IV

assuming a normal distribution

$$n_{\mathrm{preparations}} = M \sum_{\gamma=1}^{M} rac{\mathrm{Var}[H_{\gamma}]}{arepsilon^2}$$

state preparations are required to achieve a variance smaller than arepsilon

- \cdot usually the Var[H_{γ}] are unknown (but can be estimated)
- · various strategies can be used to reduce the number of state preparations
- commutating terms can be measured in parallel
- for best results only terms with $Cov[H_{\alpha}, H_{\beta}] = 0$ should be grouped, otherwise correlations might increase the number of necessary measurements

Example:
$$H = -X_0X_1 - Y_0Y_1 + Z_0Z_1 + Z_0 + Z_1$$
 (29)

$$\Rightarrow \{-X_0 X_1\}, \{-Y_0 Y_1, Z_0 Z_1\}, \{Z_0, Z_1\}$$
(30)

(covariance between X_0X_1 and Y_0Y_1)

(28)

We now have all ingredients for the electronic structure problem:

- \cdot trial state $|\Psi(ec{ heta})
 angle$ is the UCC ansatz translated to Pauli matrices
- + problem Hamiltonian H_{P} is the molecular Hamiltonian transformed to Pauli matrices
- $\cdot\,$ optimization parameters are the UCC coefficients
- measurement of the observable can be achieved by clever measurement of Pauli strings

Data from Peruzzo et al. (2014), $\mathrm{He}-\mathrm{H^{+}}$ ground state energy using two photonic qubits

VQE: Example $He - H^+$ II

- convergence of the Nelder-Mead (simplex) algorithm
- gradient-free (evaluations of the cost function require costly state preparations)

25

VQE: Example H_2

Data from O'Malley et al. (2016), H₂ ground state energy using two superconducting qubits

Previous to the VQE ansatz QPE was used for electronic structure problems on quantum computers.

• given a unitary operator U, QPE estimates the phase ω in $U |\Psi\rangle = e^{2\pi i \omega} |\Psi\rangle$ of an eigenstate $|\Psi\rangle$

- given a unitary operator U, QPE estimates the phase ω in $U |\Psi\rangle = e^{2\pi i \omega} |\Psi\rangle$ of an eigenstate $|\Psi\rangle$
- we can choose $U = \exp{[iHt/\hbar]}$, the phase ω determines the energy of the state

- given a unitary operator U, QPE estimates the phase ω in $U |\Psi\rangle = e^{2\pi i \omega} |\Psi\rangle$ of an eigenstate $|\Psi\rangle$
- we can choose $U = \exp{[iHt/\hbar]}$, the phase ω determines the energy of the state
- the qubits of an additional register are iteratively entangled with the system register using controlled unitary gates
 - the system qubits act as control bits
 - the unitary is applied with different fixed phases 2^0 , 2^1 , 2^2 , ...
 - the inverse quantum Fourier transformation is used to extract the phase from the ancillary register

- given a unitary operator U, QPE estimates the phase ω in $U |\Psi\rangle = e^{2\pi i \omega} |\Psi\rangle$ of an eigenstate $|\Psi\rangle$
- we can choose $U = \exp{[iHt/\hbar]}$, the phase ω determines the energy of the state
- the qubits of an additional register are iteratively entangled with the system register using controlled unitary gates
 - the system qubits act as control bits
 - the unitary is applied with different fixed phases 2^0 , 2^1 , 2^2 , ...
 - the inverse quantum Fourier transformation is used to extract the phase from the ancillary register
- QPE reproduces ω with high probability within a margin ε using $\mathcal{O}(\log(1/\varepsilon))$ ancillary qubits
- \cdot requires $\mathcal{O}(1/\varepsilon)$ controlled unitary gates

- given a unitary operator U, QPE estimates the phase ω in $U |\Psi\rangle = e^{2\pi i \omega} |\Psi\rangle$ of an eigenstate $|\Psi\rangle$
- we can choose $U = \exp{[iHt/\hbar]}$, the phase ω determines the energy of the state
- the qubits of an additional register are iteratively entangled with the system register using controlled unitary gates
 - the system qubits act as control bits
 - the unitary is applied with different fixed phases 2^0 , 2^1 , 2^2 , ...
 - the inverse quantum Fourier transformation is used to extract the phase from the ancillary register
- QPE reproduces ω with high probability within a margin ε using $\mathcal{O}(\log(1/\varepsilon))$ ancillary qubits
- \cdot requires $\mathcal{O}(1/\varepsilon)$ controlled unitary gates
- + still requires a scheme to prepare $|\Psi\rangle$ close to the desired state

Quantum Phase Estimation (QPE): Sketch

Quantum Phase Estimation (QPE): Characteristics

Advantages:

- requires a single measurement
- in principle one could use QPE instead of QEE in VQE

Downsides:

- requires an extra qubit register
- \cdot the accuracy depends on the number of extra qubits m
- the number of required gates for the CU operations grows rapidly, quickly becomes infeasible due to limited decoherence times and gate fidelities
- CU gates are hard to implement
- if $2^m \omega$ is not an integer success probability is reduced from 1 to $\geq \frac{4}{\pi^2} \approx 0.405$

• optimization problem whose solutions are bit strings (N bits)

$$\mathbf{z} = z_1 z_2 \dots z_n \quad z_i \in \{0, 1\} \tag{31}$$

• optimization problem whose solutions are bit strings (N bits)

$$\mathbf{z} = z_1 z_2 \dots z_n \quad z_i \in \{0, 1\} \tag{31}$$

objective function

$$C(\mathbf{z}) = \sum_{i=1}^{m} C_i(\mathbf{z})$$
(32)

given by *m* clauses $C_i(\mathbf{z})$

• optimization problem whose solutions are bit strings (N bits)

$$\mathbf{z} = z_1 z_2 \dots z_n \quad z_i \in \{0, 1\} \tag{31}$$

 \cdot objective function

$$C(\mathbf{z}) = \sum_{i=1}^{m} C_i(\mathbf{z})$$
(32)

given by *m* clauses $C_i(\mathbf{z})$

• $C_i(\mathbf{z}) = 0$ if \mathbf{z} does not fulfill the clause, 1 (or some finite value) otherwise

• optimization problem whose solutions are bit strings (N bits)

$$\mathbf{z} = z_1 z_2 \dots z_n \quad z_i \in \{0, 1\} \tag{31}$$

 \cdot objective function

$$C(\mathbf{z}) = \sum_{i=1}^{m} C_i(\mathbf{z})$$
(32)

given by *m* clauses *C_i*(**z**)

- $C_i(\mathbf{z}) = 0$ if \mathbf{z} does not fulfill the clause, 1 (or some finite value) otherwise
- goal: find the **z** that fulfills the maximum number of clauses (MAX-SAT problem)

• optimization problem whose solutions are bit strings (N bits)

$$\mathbf{z} = z_1 z_2 \dots z_n \quad z_i \in \{0, 1\} \tag{31}$$

 \cdot objective function

$$C(\mathbf{z}) = \sum_{i=1}^{m} C_i(\mathbf{z})$$
(32)

given by m clauses $C_i(\mathbf{z})$

- $C_i(\mathbf{z}) = 0$ if \mathbf{z} does not fulfill the clause, 1 (or some finite value) otherwise
- goal: find the z that fulfills the maximum number of clauses (MAX-SAT problem)
- · each clause typically depends only on a few bits

$$C_1(\mathbf{z}) = z_1 \lor z_2, \quad C_2(\mathbf{z}) = z_2 \lor \bar{z}_3, \quad C_3(\mathbf{z}) = z_1 \lor \bar{z}_3 \lor z_4, \quad \dots$$
(33)

• optimization problem whose solutions are bit strings (N bits)

$$\mathbf{z} = z_1 z_2 \dots z_n \quad z_i \in \{0, 1\} \tag{31}$$

 \cdot objective function

$$C(\mathbf{z}) = \sum_{i=1}^{m} C_i(\mathbf{z})$$
(32)

given by *m* clauses $C_i(\mathbf{z})$

- $C_i(\mathbf{z}) = 0$ if \mathbf{z} does not fulfill the clause, 1 (or some finite value) otherwise
- goal: find the z that fulfills the maximum number of clauses (MAX-SAT problem)
- each clause typically depends only on a few bits
- $z_i \rightarrow \frac{1}{2}(1-Z_i)$ maps cost function to an Ising Hamiltonian, can be treated with VQE ansatz

$$H_{\rm P} = \sum_{i=1}^{N} h_i Z_i + \sum_{i,j=1}^{N} h_{ij} Z_i Z_j + \sum_{ijk=1}^{N} h_{ijk} Z_i Z_j Z_k + \dots$$
(33)

Quantum Approximate Optimization Algorithm (QAOA)

- many classical binary optimization problems are computationally hard
- consider approximation algorithms that yield non-optimal but good solutions

QAOA: Approximation Algorithms

- \cdot many classical binary optimization problems are computationally hard
- consider approximation algorithms that yield non-optimal but good solutions
- let $C_{\max} = \max_{z} C(z)$ be the optimal solution

QAOA: Approximation Algorithms

- \cdot many classical binary optimization problems are computationally hard
- consider approximation algorithms that yield non-optimal but good solutions
- let $C_{\max} = \max_{z} C(z)$ be the optimal solution
- $\cdot\,$ the quality of a proposed solution z is given by the approximation ratio

$$=\frac{C(\mathbf{z})}{C_{\max}}$$
(34)

 \cdot *r* = 1 corresponds to optimality
QAOA: Approximation Algorithms

- \cdot many classical binary optimization problems are computationally hard
- consider approximation algorithms that yield non-optimal but good solutions
- let $C_{\max} = \max_{z} C(z)$ be the optimal solution
- \cdot the quality of a proposed solution z is given by the approximation ratio

$$r = \frac{C(\mathbf{z})}{C_{\max}} \tag{34}$$

- \cdot *r* = 1 corresponds to optimality
- if $r \ge r^*$ for all problem instances: r^* characterizes the quality of the approximation algorithm

QAOA offers a heuristic ansatz to solve classical binary optimization problems encoded as Ising Hamiltonians

$$H_{\rm P} = \sum_{i=1}^{N} h_i Z_i + \sum_{i,j=1}^{N} h_{ij} Z_j Z_j + \sum_{ijk=1}^{N} h_{ijk} Z_i Z_j Z_k + \dots$$
(35)

and employs a mixing Hamiltonian

$$H_{\rm M} = \sum_{i=1}^{N} X_i. \tag{36}$$

QAOA: Ansatz

QAOA offers a heuristic ansatz to solve classical binary optimization problems encoded as Ising Hamiltonians

$$H_{\rm P} = \sum_{i=1}^{N} h_i Z_i + \sum_{i,j=1}^{N} h_{ij} Z_i Z_j + \sum_{ijk=1}^{N} h_{ijk} Z_i Z_j Z_k + \dots$$
(35)

and employs a mixing Hamiltonian

$$H_{\rm M} = \sum_{i=1}^{N} X_i. \tag{36}$$

A single integer parameter *p* (circuit depth) controls the trial state ansatz

$$|\Psi(\vec{\beta},\vec{\gamma})\rangle = e^{-i\beta_{\rm p}H_{\rm M}}e^{-i\gamma_{\rm p}H_{\rm P}}\cdots e^{-i\beta_{\rm 1}H_{\rm M}}e^{-i\gamma_{\rm 1}H_{\rm P}}|\Psi_0\rangle \tag{37}$$

that is determined by 2*p* parameters $0 \le \gamma_i < 2\pi$ and $0 \le \beta_i \le \pi$.

QAOA: Ansatz

QAOA offers a heuristic ansatz to solve classical binary optimization problems encoded as Ising Hamiltonians

$$H_{\rm P} = \sum_{i=1}^{N} h_i Z_i + \sum_{i,j=1}^{N} h_{ij} Z_i Z_j + \sum_{ijk=1}^{N} h_{ijk} Z_i Z_j Z_k + \dots$$
(35)

and employs a mixing Hamiltonian

$$H_{\rm M} = \sum_{i=1}^{N} X_i, \qquad e^{-i\beta_j H_{\rm M}} = \prod_{i=1}^{N} e^{-i\beta_j X_i} = \bigotimes_{i=1}^{N} R_{\rm X}(2\beta_j)$$
(36)

A single integer parameter p (circuit depth) controls the trial state ansatz

$$|\Psi(\vec{\beta},\vec{\gamma})\rangle = e^{-i\beta_{\rm p}H_{\rm M}}e^{-i\gamma_{\rm p}H_{\rm P}}\cdots e^{-i\beta_{\rm 1}H_{\rm M}}e^{-i\gamma_{\rm 1}H_{\rm P}} |\Psi_0\rangle \tag{37}$$

that is determined by 2*p* parameters $0 \le \gamma_i < 2\pi$ and $0 \le \beta_i \le \pi$.

QAOA: Circuit Visualization

QAOA: Optimization Problem

 \cdot the parameters $\vec{\beta}$ and $\vec{\gamma}$ are optimized to maximize the expectation value

$$F_{\rho} = \langle \Psi(\vec{\beta}, \vec{\gamma}) | H_{\rm P} | \Psi(\vec{\beta}, \vec{\gamma}) \rangle \tag{38}$$

approximation ratio

$$r_p = \frac{F_p}{C_{\max}} \tag{39}$$

• adding a layer cannot worsen the result

$$F_{p+1} \ge F_p \tag{40}$$

• optimal limit

$$\lim_{p \to \infty} F_p = C_{\max} \tag{41}$$

approximates adiabatic quantum computing

• recall adiabatic quantum computing:

$$H(t) = (1 - f(t))H_{\rm M} + f(t)H_{\rm P}$$

$$\tag{42}$$

QAOA: Motivation I

• recall adiabatic quantum computing:

$$H(t) = (1 - f(t))H_{\rm M} + f(t)H_{\rm P}$$

$$\tag{42}$$

• discrete time-step

$$|\Psi(t+\Delta t)\rangle = \exp\left[-i\Delta t\left(\left(1-f(t)\right)H_{\rm M}+f(t)H_{\rm P}\right)\right]|\Psi(t)\rangle.$$
(43)

QAOA: Motivation I

• recall adiabatic quantum computing:

$$H(t) = (1 - f(t))H_{\rm M} + f(t)H_{\rm P}$$

$$\tag{42}$$

• discrete time-step

$$|\Psi(t + \Delta t)\rangle = \exp\left[-i\Delta t\left((1 - f(t))H_{\rm M} + f(t)H_{\rm P}\right)\right]|\Psi(t)\rangle.$$
(43)

• Trotter-Suzuki first order

$$e^{\delta(A+B)} \approx e^{\delta A} e^{\delta B} + \mathcal{O}(\delta^2)$$
 (44)

QAOA: Motivation I

• recall adiabatic quantum computing:

$$H(t) = (1 - f(t))H_{\rm M} + f(t)H_{\rm P}$$

$$\tag{42}$$

• discrete time-step

$$|\Psi(t+\Delta t)\rangle = \exp\left[-i\Delta t\left(\left(1-f(t)\right)H_{\rm M}+f(t)H_{\rm P}\right)\right]|\Psi(t)\rangle.$$
(43)

• Trotter-Suzuki first order

$$e^{\delta(A+B)} \approx e^{\delta A} e^{\delta B} + \mathcal{O}(\delta^2)$$
 (44)

$$|\Psi(t+\Delta t)\rangle \approx \exp\left[-i(1-f(t))\Delta t\mathcal{H}_{\rm M}\right] \exp\left[-if(t)\Delta t\mathcal{H}_{\rm P}\right] |\Psi(t)\rangle + \mathcal{O}(\Delta t^2)$$
(45)

$$|\Psi(t+\Delta t)\rangle \approx \exp\left[-i(1-f(t))\Delta tH_{\rm M}\right] \exp\left[-if(t)\Delta tH_{\rm P}\right]|\Psi(t)\rangle + \mathcal{O}(\Delta t^2)$$
(46)

$$|\Psi(t + \Delta t)\rangle \approx \exp\left[-i\beta H_{\rm M}\right] \exp\left[-i\gamma H_{\rm P}\right] |\Psi(t)\rangle + \mathcal{O}(\Delta t^2)$$
 (46)

• define $\beta = (1 - f(t)) \Delta t$ and $\gamma = f(t) \Delta t$

QAOA: Motivation II

$$|\Psi(t + \Delta t)\rangle \approx \underbrace{\exp\left[-i\beta H_{\rm M}\right]}_{\text{one QAOA layer}} \exp\left[-i\gamma H_{\rm P}\right]}_{|\Psi(t)\rangle + \mathcal{O}(\Delta t^2)$$
(46)

- define $\beta = (1 f(t)) \Delta t$ and $\gamma = f(t) \Delta t$
- one time-step $\widehat{=}$ one layer of QAOA

QAOA: Motivation II

$$|\Psi(t + \Delta t)\rangle \approx \underbrace{\exp\left[-i\beta H_{\rm M}\right]}_{\text{one OAOA layer}} \exp\left[-i\gamma H_{\rm P}\right]}_{|\Psi(t)\rangle + \mathcal{O}(\Delta t^2)$$
(46)

- define $\beta = (1 f(t)) \Delta t$ and $\gamma = f(t) \Delta t$
- \cdot one time-step $\widehat{=}$ one layer of QAOA
- + however QAOA optimizes β and γ independently

QAOA: Motivation II

$$|\Psi(t + \Delta t)\rangle \approx \underbrace{\exp\left[-i\beta H_{\rm M}\right] \exp\left[-i\gamma H_{\rm P}\right]}_{\text{one QAOA layer}} |\Psi(t)\rangle + \mathcal{O}(\Delta t^2)$$
 (46)

• define
$$\beta = (1 - f(t)) \Delta t$$
 and $\gamma = f(t) \Delta t$

- \cdot one time-step $\widehat{=}$ one layer of QAOA
- + however QAOA optimizes β and γ independently
- $p \rightarrow \infty$ (infinitely many layers) reproduces adiabatic trajectory

QAOA: Applications

- maximum likelihood channel decoding (communications)
- community detection (social, neural and biological networks)
- portfolio optimization (finance industry)
- exact cover problem (tiling problems and aircraft flight gate assignment)
- maximum independent set (radio networks and genetic engineering)
- MaxCut (integrated circuit design, statistical physics, data clustering)
- linear algebra (fundamental for many applications)
- traveling salesperson (logistics, traveling)
- graph coloring (scheduling, compiler optimization)
- correlation clustering (data science)
- other satisfiability problems, ...

- \cdot well controllable
 - \cdot single integer parameter determines the circuit structure
 - increasing p can not worsen solution (monotonous)
- it has been shown that the parametric square-pulse ansatz ("bang-bang") is optimal given a fixed quantum computation time budget
- QAOA can learn to exploit diabatic transitions to overcome small energy gap limitations
- gate imperfections can be mitigated by parameter tuning
- circuits are relatively shallow
- nice implementation on Rydberg platform (driving with global pulses)

Max-Cut

Max-Cut: Problem Statement

Partition the vertices of a graph in two sets, such that the sum of edge weights between the sets becomes maximal.

$$C(\mathbf{z}) = \sum_{i,j=1}^{N} w_{ij} z_i (1 - z_j)$$
(47)

Max-Cut: Problem Statement

Partition the vertices of a graph in two sets, such that the sum of edge weights between the sets becomes maximal.

$$C(\mathbf{z}) = \sum_{i,j=1}^{N} w_{ij} z_i (1 - z_j)$$
(47)

- NP-hard: no polynomial time algorithm (if N \neq NP)
- · state-of-the-art solvers can solve up to $N \approx 100$
- stochastic solvers for $N = O(10^2)$ (no solution guaranteed)

Max-Cut: Problem Statement

Partition the vertices of a graph in two sets, such that the sum of edge weights between the sets becomes maximal.

$$C(\mathbf{z}) = \sum_{i,j=1}^{N} w_{ij} Z_i (1 - Z_j)$$
(47)

- NP-hard: no polynomial time algorithm (if N \neq NP)
- $\cdot\,$ state-of-the-art solvers can solve up to $N\approx 100\,$
- stochastic solvers for $N = O(10^2)$ (no solution guaranteed)
- APX-hard: every polynomial-time approximation scheme has an approximation ratio guarantee $r^* < 1$
- \cdot solving the problem for generic graphs with $r^* \geq {
 m ^{16}/{17}} pprox$ 0.9412 is NP-hard
- \cdot the best classical algorithm can only guarantee $r^* \gtrsim 0.87856$

• often: only consider k-regular graphs (usually k = 3), i.e. graphs where each vertex has exactly 3 edges to other vertices.

• often: only consider k-regular graphs (usually k = 3), i.e. graphs where each vertex has exactly 3 edges to other vertices.

- often: only consider k-regular graphs (usually k = 3), i.e. graphs where each vertex has exactly 3 edges to other vertices.
- solving with $r^* \ge \frac{331}{332} \approx 0.9970$ is NP-hard

- often: only consider k-regular graphs (usually k = 3), i.e. graphs where each vertex has exactly 3 edges to other vertices.
- solving with $r^* \geq \frac{331}{332} \approx 0.9970$ is NP-hard
- \cdot best classical algorithm guarantees $r \gtrapprox 0.9326$

Max-Cut: Application of QAOA

- many studies investigating this problem (including original QAOA paper)
- \cdot the problem can be encoded as the Ising Hamiltonian

$$H_{\rm P} = \frac{1}{2} \sum_{\langle i,j \rangle} w_{ij} \left(1 - Z_i Z_j \right) \tag{48}$$

• problem instance specific constant

$$C = \frac{1}{2} \sum_{\langle i,j \rangle} w_{ij} \tag{49}$$

• sub-circuit for each edge of the graph ($w_{ij} = 1$): exp $\left[-\frac{i}{2}w_{ij}\gamma_l Z_i Z_j\right]$

Farhi et al. (2014): r^{*} ≥ 0.692 for p = 1

- Farhi et al. (2014): r^{*} ≥ 0.692 for p = 1
- Wurtz & Love (2021):
 - $\cdot r^* \gtrsim 0.7559$ for p = 2
 - $\cdot r^* \gtrapprox 0.7924$ for p = 3

- Farhi et al. (2014): r^{*} ≥ 0.692 for p = 1
- Wurtz & Love (2021):
 - $\cdot r^* \gtrsim 0.7559$ for p = 2
 - $\cdot r^* \gtrapprox 0.7924$ for p = 3
 - \cdot no quantum advantage for at least p < 6

- Farhi et al. (2014): r^{*} ≥ 0.692 for p = 1
- Wurtz & Love (2021):
 - $\cdot r^* \gtrsim 0.7559$ for p = 2
 - $\cdot r^* \gtrapprox 0.7924$ for p = 3
 - \cdot no quantum advantage for at least p < 6
- no known bounds for p > 3

- Farhi et al. (2014): r^{*} ≥ 0.692 for p = 1
- Wurtz & Love (2021):
 - $r^* \gtrsim 0.7559$ for p = 2
 - $r^* \gtrsim 0.7924$ for p = 3
 - \cdot no quantum advantage for at least p < 6
- no known bounds for p > 3

Zhou et al. (2020):

- robustness against small energy gaps
- exploit patterns in parameters

Max-Cut: Approximation Ratio for Different p

Performance on weighted 4-regular graphs with 16 vertices, data from Zhou et al. (2020)

AQC requires extremely long evolution times when using a simple trajectory

QAOA result can be used to craft an optimized trajectory for AQC

Max-Cut: Random Graphs (Erdős–Rényi)

QAOA can also perform well on random graphs

orange: best classical algorithm, data from Crooks (2018)

Max-Cut: Random Graphs (Erdős–Rényi)

Here $p \ge 8$ achieves quantum advantage (**note system size however**!)

orange: best classical algorithm, data from Crooks (2018)

Conclusions & Outlook

Conclusions:

- \cdot VQE has been used to accurately reproduce the energies of simple molecules
- \cdot with current hardware it produces more accurate results than QPE

Conclusions:

- \cdot VQE has been used to accurately reproduce the energies of simple molecules
- \cdot with current hardware it produces more accurate results than QPE

Outlook:

- treatment of larger molecules:
 - + largest so far 6 qubits for ${\rm BeH}_2$ (heuristic ansatz instead of UCC)
 - $\cdot\,$ far from any actual quantum advantage
- $\cdot\,$ deeper analysis of convergence and local optima

Outlook: QAOA

Outlook:

- $\cdot\,$ better understanding for p>1
- optimizing mixer Hamiltonian
- improved strategies for optimizing $\vec{\gamma}/\vec{\beta}$
- tackle barren pleateaus
- demonstrate quantum advantage
 - surpass classical approximation ratio on system sizes that cannot be treated with exact algorithms
 - $\cdot\,$ actual experimental implementations
 - "soon": QAOA for N = 400 vertices with $p \gtrsim 25$ (Rydberg atoms in optical tweezer arrays)

- Original work, He H⁺ using two photonic qubits Alberto Peruzzo et al. "A Variational Eigenvalue Solver on a Photonic Quantum Processor". en. In: Nature Communications 5.1 (July 2014), p. 4213. ISSN: 2041-1723. DOI: 10/f6df9g
- H₂ using two superconducting qubits
 P. J. J. O'Malley et al. "Scalable Quantum Simulation of Molecular Energies". In: *Phys. Rev. X* 6.3 (July 2016), p. 031007. DOI: 10/f8wcgg

theoretical discussion of the method Jarrod R. McClean et al. "The Theory of Variational Hybrid Quantum-Classical Algorithms". en. In: New J. Phys. 18.2 (Feb. 2016), p. 023023. ISSN: 1367-2630. DOI: 10/gdcc5s

Select References: QAOA

• Original work, Max-Cut with QAOA

Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. **"A Quantum Approximate Optimization Algorithm".** In: *arXiv:1411.4028 [quant-ph]* (Nov. 2014). arXiv: 1411.4028 [quant-ph]

- In-depth analysis, comparison to AQC
 Leo Zhou et al. "Quantum Approximate Optimization Algorithm: Performance, Mechanism, and Implementation on Near-Term Devices". In: Phys. Rev. X 10.2 (June 2020), p. 021067. DOI: 10/gg4nk2
- Random graphs

Gavin E. Crooks. **"Performance of the Quantum Approximate Optimization Algorithm on the Maximum Cut Problem".** In: *arXiv:1811.08419 [quant-ph]* (Nov. 2018). arXiv: 1811.08419 [quant-ph]

Thank you for your attention!