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Motivation

• quantum mechanics has unique features (superposition of states, entanglement, …)
• exploit these features to perform computations
• suggest some advantages over classical computers (solve certain problems
substantially faster)

• different quantum computing paradigms have been proposed
• digital quantum computer (gate-based approach)
• adiabatic quantum computing and quantum annealing (analog approaches)
• quantum cellular automata
• …

• limited usefulness due to hardware constraints
• hybrid approaches:

• variational quantum eigensolver and quantum approximate optimization algorithm
• “robust” against gate imperfections, shallow circuits, already useful for a limited number
of qubits
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Notation

• notation for the Pauli matrices

I = σ0 =

(
1 0
0 1

)
X = σ1 = σx =

(
0 1
1 0

)
(1)

Y = σ2 = σy =

(
0 −i
i 0

)
Z = σ3 = σz =

(
1 0
0 −1

)
(2)

• subscripts indicate qubit: X1Y2 = X ⊗ Y
• computational basis is z-basis:

|0〉 = |↓〉 (3)
|1〉 = |↑〉 (4)
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Digital Quantum Computer



Digital QC: Principle

• applies quantum gates to registers of qubits, performs arbitrary computations
• interesting algorithms (e.g. Shor or Grover) have been proposed to solve problems
faster than on a classical computer
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Digital QC: Vincenzo’s Criteria

Criteria for a universal quantum computer

• well-defined qubits (two-level system)
• initialization of the qubits in a well defined-state
• long decoherence time
• a universal set of quantum gates (very small set of one- and two-qubit gates)
• qubit-selective readout
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Digital QC: Qubit Implementations

• many platforms have been suggested/explored:

• Josephson junctions
• photonic qubits
• Rydberg atoms
• electrons
• nuclear spin (NMR)
• quantum dots

• topological systems (non-abelian
anyons)

• optical lattices (internal atomic states)

• van der Waals heterostructures

• …

• platforms differ vastly regarding the relevant characteristics
• gate fidelities
• connectivity
• storage and decoherence time
• scalability (number of qubits)
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Digital QC: Characteristics

Advantages:

• can run arbitrary quantum algorithms (quantum Turing machine)

Disadvantages:

• limited by currently available hardware
• limited number of gate operations due to short decoherence times and gate infidelity
• number of qubits is generally small
• quantum error correction demands even more qubits

• number of proposed algorithms is fairly limited
• so far only one claim of actual quantum advantage:

• Google 2019: sampling random quantum circuits
• 53 superconducting qubits
• classical supercomputer was limited to 43 qubits
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Analog Quantum Computer



Analog QC: Principle I

Here: Analog Quantum Computing = Adiabatic Quantum Computing

• solve an optimization problem encoded in a problem Hamiltonian HP

• start with the ground state of a well known Hamiltonian

H0 =
N∑
i=1

Xi (5)

• slowly drive the Hamiltonian to HP

H(t) =
(
1− f (t)

)
H0 + f (t)HP, f (0) = 0, f (tf) = 1 (6)

• if done slow enough the system will remain in the instantaneous ground state
(adiabatic theorem)

• maximum feasible speed depends on minimum energy gap in the system

tf = O(∆E−2) (7)
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Analog QC: Principle II

adiabatic
trajectory
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Characteristics

Advantages:

• well suited for optimization/eigenvalue problems
• commercial platforms with thousands of qubits available (e.g. D-Wave with
superconducting qubits)

Disadvantages:

• not universal, at least on current hardware (e.g. Shor algorithm cannot be mapped)
• near degeneracies/avoided crossings require slow driving
• no evidence for quantum speed-up so far
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Variational Quantum Eigensolver
(VQE)



VQE: Principle

• hybrid approach that may render today’s quantum hardware more useful
• solve optimization/eigenvalue problems
• combine a quantum computer with a classical optimizer

1. prepare a state |Ψ(~θ)〉 according to some parameters ~θ (e.g. parametric circuit UC(~θ))
2. evaluate the cost function (i.e. measure some observable) w.r.t. this trial state
3. employ a classical optimizer to propose a new set of parameters
4. repeat until converged

• variational principle guarantees

〈Ψ(~θ)|HP|Ψ(~θ)〉 ≥ E0 (8)

• the optimization of parameters can mitigate imperfections of the hardware to some
extent
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VQE: Feedback Loop

  

Quantum Subroutine

Classical Optimization Loop

Quantum Register Trial Wave Function Cost Function
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VQE: Typical Structure of a Parametric Circuit

N qubits store the trial states
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VQE: Typical Structure of a Parametric Circuit

single qubit gates rotate each qubit according to some parameters ~θ
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VQE: Typical Structure of a Parametric Circuit

entanglers generate entanglement among the qubits, crucial for quantum speed-up
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VQE: Typical Structure of a Parametric Circuit

operator structure is repeated
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VQE: Entanglement Schemes

linear circular full
• of course other schemes are conceivable as well
• best choice depends on the connectivity of the hardware platform and the problem
under consideration

• it would be nice to have a simple scheme guiding the construction of such circuits
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VQE: Molecular Hamiltonian

• electronic problem in Born-Oppenheimer approximation

H = −
Ne∑
i=1

~2

2me
∇2

︸ ︷︷ ︸
kinetic

−
Nn∑
i=1

Ne∑
j=1

Zie2

4πε0
∣∣∣~Ri −~rj

∣∣∣︸ ︷︷ ︸
electron-nuclei int.

+
1
2

Ne∑
i,j=1
i 6=j

e2

4πε0
∣∣~ri −~rj

∣∣
︸ ︷︷ ︸
electron-electron int.

(9)

• Hartree-Fock method allows for efficient mean-field treatment
• limited usefulness, does not incorporate electronic correlations
• can serve as a starting point for post-Hartree-Fock methods like configuration
interaction or coupled cluster

• these methods are computationally hard due to the scaling w.r.t. system size
• only feasible for “small” molecules, typically up to O(102) electrons
• quantum computers can efficiently store and work with these correlated states
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VQE: Unitary Coupled Cluster (UCC) Ansatz I

• wave function ansatz
|Ψ〉 = eT−T

†
|Ψref〉 (10)

• reference state |Ψref〉, typically a single Slater determinant of Hartree-Fock orbitals
• cluster operator

T =

Ne∑
i=1

Ti (11)

• terms describe i-particle excitations to unoccupied (virtual) orbitals

T1 =
∑
i∈occ.
a∈virt.

tiaa
†
aai (12)

T2 =
∑

i>j∈occ.
a>b∈virt.

tijaba
†
aa†baiaj (13)

. . . (14)
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VQE: Unitary Coupled Cluster Ansatz (UCC) II

• the problem is to determine the coefficients tia, t
ij
ab, … that best describe the ground

state (or any other desired state)

• usually one truncates T after some order of excitation n < Ne (e.g. up to double
excitations)

• otherwise the problem might be too large
• higher order terms contribute less
• usually better truncation than configuration interaction (recovers more of the correlation
energy due to the non-linear ansatz)

• the molecular Hamiltonian in second quantization reads

H =
∑
pq
hpqa†paq +

∑
pqkl

hpqkla†pa†qakal (15)
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How to map the fermionic UCC function and the molecular Hamiltonian to a quantum
computer (spin-1/2)?
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VQE: Fermionic Transformations

• the fermionic operators a†j and aj can be transformed to spin-1/2 operators using the
Jordan-Wigner transformation

a†j = exp

iπ j−1∑
k=1

σ+
k σ

−
k

σ+
j (16)

aj = exp

−iπ j−1∑
k=1

σ+
k σ

−
k

σ−
j (17)

with σ+
j = 1/2(Xj + iYj) and σ−

j = 1/2(Xj − iYj)

• alternative: Bravyi-Kitaev (BK) transformation
• example: BK trafo for H2

H = g01+ g1Z0 + g2Z1 + g3Z0Z1 + g4Y0Y1 + g5X0X1 (18)

(parameters gi depend on nuclear coordinates and some constants)
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VQE: Quantum Expectation Estimation I

How do we measure 〈Ψ(~θ)|HP|Ψ(~θ)〉?

• a quantum computer must be able to selectively measure Zi
• other operators can be measured by performing unitary transformations U

O = U†ZU (19)

• this allows for single-qubit Pauli measurements (measure X, Y , Z)

O = X U = H (20)
O = Y U = HS† (21)
O = Z U = 1 (22)

here H denotes the Hadamard and S the π/4 phase gate

19



VQE: Quantum Expectation Estimation II

• the same principle can be applied to multi-qubit measurements

O = X ⊗ Z U = CNOT (H⊗ 1) (23)
O = X ⊗ Y U = CNOT

(
H⊗ HS†

)
(24)

...
...

• this allows general Pauli strings to be measured, e.g. X ⊗ Y ⊗ Y ⊗ Z

20



VQE: Quantum Expectation Estimation III

• let’s assume the Hamiltonian consists of M Pauli strings

H =
M∑

γ=1
Hγ (25)

• it’s expectation value is given by

〈H〉 =
M∑

γ=1
〈Hγ〉 (26)

• individual state preparation for every Pauli string⇒ additive variances

Var[H] =
M∑

γ=1
Var[Hγ ] (27)

21



VQE: Quantum Expectation Estimation IV

• assuming a normal distribution

npreparations = M
M∑

γ=1

Var[Hγ ]

ε2
(28)

state preparations are required to achieve a variance smaller than ε

• usually the Var[Hγ ] are unknown (but can be estimated)
• various strategies can be used to reduce the number of state preparations
• commutating terms can be measured in parallel
• for best results only terms with Cov[Hα,Hβ] = 0 should be grouped, otherwise
correlations might increase the number of necessary measurements

Example : H = −X0X1 − Y0Y1 + Z0Z1 + Z0 + Z1 (29)
⇒ {−X0X1}, {−Y0Y1, Z0Z1}, {Z0, Z1} (30)

(covariance between X0X1 and Y0Y1)
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VQE: Ingredients for Molecular Problem

We now have all ingredients for the electronic structure problem:

• trial state |Ψ(~θ)〉 is the UCC ansatz translated to Pauli matrices
• problem Hamiltonian HP is the molecular Hamiltonian transformed to Pauli matrices
• optimization parameters are the UCC coefficients
• measurement of the observable can be achieved by clever measurement of Pauli
strings

23



VQE: Example He − H+
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Data from Peruzzo et al. (2014), He − H+ ground state energy using two photonic qubits
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VQE: Example He − H+ II
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• convergence of the Nelder-Mead (simplex) algorithm
• gradient-free (evaluations of the cost function require costly state preparations) 25



VQE: Example H2
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Data from O’Malley et al. (2016), H2 ground state energy using two superconducting qubits
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Quantum Phase Estimation (QPE): Principle

Previous to the VQE ansatz QPE was used for electronic structure problems on quantum
computers.

• given a unitary operator U, QPE estimates the phase ω in U |Ψ〉 = e2πiω |Ψ〉 of an
eigenstate |Ψ〉

• we can choose U = exp [iHt/~], the phase ω determines the energy of the state
• the qubits of an additional register are iteratively entangled with the system register
using controlled unitary gates

• the system qubits act as control bits
• the unitary is applied with different fixed phases 20, 21, 22, . . .
• the inverse quantum Fourier transformation is used to extract the phase from the
ancillary register

• QPE reproduces ω with high probability within a margin ε using O (log(1/ε)) ancillary
qubits

• requires O(1/ε) controlled unitary gates
• still requires a scheme to prepare |Ψ〉 close to the desired state
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Quantum Phase Estimation (QPE): Sketch

quantum state

counting register
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Quantum Phase Estimation (QPE): Characteristics

Advantages:

• requires a single measurement
• in principle one could use QPE instead of QEE in VQE

Downsides:

• requires an extra qubit register
• the accuracy depends on the number of extra qubits m
• the number of required gates for the CU operations grows rapidly, quickly becomes
infeasible due to limited decoherence times and gate fidelities

• CU gates are hard to implement
• if 2mω is not an integer success probability is reduced from 1 to ≥ 4

π2 ≈ 0.405
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VQE: Classical Binary Optimization Problems

• optimization problem whose solutions are bit strings (N bits)

z = z1z2 . . . zn zi ∈ {0, 1} (31)

• objective function

C(z) =
m∑
i=1

Ci(z) (32)

given by m clauses Ci(z)
• Ci(z) = 0 if z does not fulfill the clause, 1 (or some finite value) otherwise
• goal: find the z that fulfills the maximum number of clauses (MAX-SAT problem)
• each clause typically depends only on a few bits
• zi → 1

2 (1− Zi) maps cost function to an Ising Hamiltonian, can be treated with VQE
ansatz

HP =
N∑
i=1

hiZi +
N∑

i,j=1

hijZiZj +
N∑

ijk=1

hijkZiZjZk + . . . (33)

• How to generate trial states? 30
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Quantum Approximate
Optimization Algorithm (QAOA)



QAOA: Approximation Algorithms

• many classical binary optimization problems are computationally hard
• consider approximation algorithms that yield non-optimal but good solutions

• let Cmax = max
z
C(z) be the optimal solution

• the quality of a proposed solution z is given by the approximation ratio

r = C(z)
Cmax

(34)

• r = 1 corresponds to optimality
• if r ≥ r∗ for all problem instances: r∗ characterizes the quality of the approximation
algorithm
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QAOA: Ansatz

QAOA offers a heuristic ansatz to solve classical binary optimization problems encoded as
Ising Hamiltonians

HP =
N∑
i=1

hiZi +
N∑

i,j=1

hijZiZj +
N∑

ijk=1

hijkZiZjZk + . . . (35)

and employs a mixing Hamiltonian

HM =
N∑
i=1

Xi. (36)
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|Ψ(~β,~γ)〉 = e−iβpHMe−iγpHP · · · e−iβ1HMe−iγ1HP |Ψ0〉 (37)

that is determined by 2p parameters 0 ≤ γi < 2π and 0 ≤ βi ≤ π.
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N∏
i=1

e−iβjXi =
N⊗
i=1

Rx(2βj) (36)
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|Ψ(~β,~γ)〉 = e−iβpHMe−iγpHP · · · e−iβ1HMe−iγ1HP |Ψ0〉 (37)
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QAOA: Circuit Visualization

compute new parameters
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QAOA: Optimization Problem

• the parameters ~β and ~γ are optimized to maximize the expectation value

Fp = 〈Ψ(~β,~γ)|HP|Ψ(~β,~γ)〉 (38)

• approximation ratio
rp =

Fp
Cmax

(39)

• adding a layer cannot worsen the result

Fp+1 ≥ Fp (40)

• optimal limit
lim
p→∞

Fp = Cmax (41)

approximates adiabatic quantum computing
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QAOA: Motivation I

• recall adiabatic quantum computing:

H(t) =
(
1− f (t)

)
HM + f (t)HP (42)

• discrete time-step

|Ψ(t +∆t)〉 = exp

[
−i∆t

((
1− f (t)

)
HM + f (t)HP

)]
|Ψ(t)〉 . (43)

• Trotter-Suzuki first order
eδ(A+B) ≈ eδAeδB +O(δ2) (44)

|Ψ(t +∆t)〉 ≈ exp

[
−i
(
1− f (t)

)
∆tHM

]
exp

[
−if (t)∆tHP

]
|Ψ(t)〉+O(∆t2) (45)
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QAOA: Motivation II

|Ψ(t +∆t)〉 ≈ exp

[
−i
(
1− f (t)

)
∆tHM

]
exp

[
−if (t)∆tHP

]
|Ψ(t)〉+O(∆t2) (46)

• define β = (1− f (t))∆t and γ = f (t)∆t
• one time-step =̂ one layer of QAOA
• however QAOA optimizes β and γ independently
• p→ ∞ (infinitely many layers) reproduces
adiabatic trajectory
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QAOA: Applications

• maximum likelihood channel decoding (communications)
• community detection (social, neural and biological networks)
• portfolio optimization (finance industry)
• exact cover problem (tiling problems and aircraft flight gate assignment)
• maximum independent set (radio networks and genetic engineering)
• MaxCut (integrated circuit design, statistical physics, data clustering)
• linear algebra (fundamental for many applications)
• traveling salesperson (logistics, traveling)
• graph coloring (scheduling, compiler optimization)
• correlation clustering (data science)
• other satisfiability problems, …
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QAOA: Advantages

• well controllable
• single integer parameter determines the circuit structure
• increasing p can not worsen solution (monotonous)

• it has been shown that the parametric square-pulse ansatz (“bang-bang”) is optimal
given a fixed quantum computation time budget

• QAOA can learn to exploit diabatic transitions to overcome small energy gap
limitations

• gate imperfections can be mitigated by parameter tuning
• circuits are relatively shallow
• nice implementation on Rydberg platform (driving with global pulses)
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Max-Cut



Max-Cut: Problem Statement

Partition the vertices of a graph in two sets, such that the sum of edge weights
between the sets becomes maximal.

C(z) =
N∑

i,j=1

wijzi(1− zj) (47)

• NP-hard: no polynomial time algorithm (if N 6= NP)
• state-of-the-art solvers can solve up to N ≈ 100
• stochastic solvers for N = O(102) (no solution guaranteed)
• APX-hard: every polynomial-time approximation scheme has an approximation ratio
guarantee r∗ < 1

• solving the problem for generic graphs with r∗ ≥ 16/17 ≈ 0.9412 is NP-hard
• the best classical algorithm can only guarantee r∗ ' 0.87856
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Max-Cut: Example

Here: equal weights wij = 1
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Max-Cut: k-Regular Graphs

• often: only consider k-regular graphs (usually k = 3), i.e. graphs where each vertex
has exactly 3 edges to other vertices.

• solving with r∗ ≥ 331/332 ≈ 0.9970 is NP-hard
• best classical algorithm guarantees r ' 0.9326

k = 0 k = 1 k = 2 k = 3
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Max-Cut: Application of QAOA

• many studies investigating this problem (including original QAOA paper)
• the problem can be encoded as the Ising Hamiltonian

HP =
1
2
∑
〈i,j〉

wij
(
1− ZiZj

)
(48)

• problem instance specific constant

C =
1
2
∑
〈i,j〉

wij (49)

• sub-circuit for each edge of the graph (wij = 1): exp
[
− i
2wijγlZiZj

]
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Max-Cut: QAOA Results

Performance guarantees for 3-regular graphs (lower bounds):

• Farhi et al. (2014): r∗ ≥ 0.692 for p = 1

• Wurtz & Love (2021):

• r∗ ' 0.7559 for p = 2
• r∗ ' 0.7924 for p = 3
• no quantum advantage for at least p < 6

• no known bounds for p > 3

Zhou et al. (2020):

• robustness against small energy gaps
• exploit patterns in parameters
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Max-Cut: Approximation Ratio for Different p

Performance on weighted 4-regular graphs with 16 vertices, data from Zhou et al. (2020)

2 4 6 8 10

p
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1
−
r
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Max-Cut: Small Energy Gaps

AQC requires extremely long evolution times when using a simple trajectory
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Data from Zhou et al. (2020), 3-regular graph with N = 14 nodes and a small minimum
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Max-Cut: Small Energy Gaps

QAOA is reasonably robust against the small energy gap
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Max-Cut: Small Energy Gaps

p ' 24 significantly improves the result
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Max-Cut: Small Energy Gaps

QAOA result can be used to craft an optimized trajectory for AQC
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Max-Cut: Random Graphs (Erdős–Rényi)

QAOA can also perform well on random graphs
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orange: best classical algorithm, data from Crooks (2018)
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Max-Cut: Random Graphs (Erdős–Rényi)

Here p ≥ 8 achieves quantum advantage (note system size however!)
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Conclusions & Outlook



Conclusions & Outlook: VQE

Conclusions:

• VQE has been used to accurately reproduce the energies of simple molecules
• with current hardware it produces more accurate results than QPE

Outlook:

• treatment of larger molecules:
• largest so far 6 qubits for BeH2 (heuristic ansatz instead of UCC)
• far from any actual quantum advantage

• deeper analysis of convergence and local optima

47



Conclusions & Outlook: VQE

Conclusions:

• VQE has been used to accurately reproduce the energies of simple molecules
• with current hardware it produces more accurate results than QPE

Outlook:

• treatment of larger molecules:
• largest so far 6 qubits for BeH2 (heuristic ansatz instead of UCC)
• far from any actual quantum advantage

• deeper analysis of convergence and local optima

47



Outlook: QAOA

Outlook:
• better understanding for p > 1
• optimizing mixer Hamiltonian
• improved strategies for optimizing ~γ/~β
• tackle barren pleateaus
• demonstrate quantum advantage

• surpass classical approximation ratio
on system sizes that cannot be treated
with exact algorithms

• actual experimental implementations
• “soon”: QAOA for N = 400 vertices with
p ' 25 (Rydberg atoms in optical
tweezer arrays)
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Select References: QAOA
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• In-depth analysis, comparison to AQC
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2020), p. 021067. doi: 10/gg4nk2

• Random graphs
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Thank you for your attention!
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